Chemicals in Medicine
Essay by people • August 8, 2011 • Essay • 1,078 Words (5 Pages) • 1,942 Views
Chemicals in Medicines
An antibacterial is a compound or substance that kills or slows down the growth of bacteria.[1] The term is often used synonymously with the term antibiotic(s); today, however, with increased knowledge of the causative agents of various infectious diseases, antibiotic(s) has come to denote a broader range of antimicrobial compounds, including anti-fungal and other compounds.[2]
The term "antibiotic" was coined by Selman Waksman in 1942 to describe any substance produced by a microorganism that is antagonistic to the growth of other microorganisms in high dilution.[3] This definition excluded substances that kill bacteria but are not produced by microorganisms (such as gastric juices and hydrogen peroxide). It also excluded synthetic antibacterial compounds such as the sulfonamides. Many antibacterial compounds are relatively small molecules with a molecular weight of less than 2000 atomic mass units.
With advances in medicinal chemistry, most of today's antibacterials chemically are semisynthetic modifications of various natural compounds.[4] These include, for example, the beta-lactam antibacterials, which include the penicillins (produced by fungi in the genus 'Penicillium'), the cephalosporins, and the carbapenems. Compounds that are still isolated from living organisms are the aminoglycosides, whereas other antibacterials--for example, the sulfonamides, the quinolones, and the oxazolidinones--are produced solely by chemical synthesis. Accordingly, many antibacterial compounds are classified on the basis of chemical/biosynthetic origin into natural, semisynthetic, and synthetic. Another classification system is based on biological activity; in this classification antibacterials are divided into two broad groups according to their biological effect on microorganisms: bactericidal agents kill bacteria, and bacteriostatic agents slow down or stall bacterial growth.Penicillin, the first natural antibiotic discovered by Alexander Fleming in 1928.
Before the early twentieth century, treatments for infections were based primarily on medicinal folklore. Mixtures with antimicrobial properties that were used in treatments of infections were described over 2000 years ago.[5] Many ancient cultures, including the ancient Egyptians and ancient Greeks used specially selected mold and plant materials and extracts to treat infections.[6][7] More recent observations made in the laboratory of antibiosis between micro-organisms led to the discovery of natural antibacterials produced by microorganisms. Louis Pasteur observed that, "if we could intervene in the antagonism observed between some bacteria, it would offer perhaps the greatest hopes for therapeutics".[8]
The term antibiosis, meaning "against life," was introduced by the French bacteriologist Vuillemin as a descriptive name of the phenomenon exhibited by these early antibacterial drugs.[9][10] Antibiosis was first described in 1877 in bacteria when Louis Pasteur and Robert Koch observed that an airborne bacillus could inhibit the growth of Bacillus anthracis.[11] These drugs were later renamed antibiotics by Selman Waksman, an American microbiologist in 1942.[3][9]
Antagonistic activities by fungi against bacteria were first described in England by John Tyndall in 1875.[8] Synthetic antibiotic chemotherapy as a science and development of antibacterials began in Germany with Paul Ehrlich in the late 1880s.[9] Ehrlich noted that certain dyes would color human, animal, or bacterial cells, while others did not. He then proposed the idea that it might be possible to create chemicals that would act as a selective drug that would bind to and kill bacteria without harming the human host. After screening hundreds of dyes against various organisms, he discovered a medicinally useful drug, the synthetic antibacterial Salvarsan.[9][12][13] In 1928, Alexander Fleming observed antibiosis against bacteria by a fungus of the genus 'Penicillium'. Fleming postulated that
...
...