Quality Textiles International Scenario
Essay by people • May 11, 2012 • Coursework • 505 Words (3 Pages) • 1,473 Views
Quality Textiles International Scenario
Since Quality Textiles quality assurance department checks their product regularly, they know that their process for fabric weight has a mean of 2.73 oz/in² and a standard deviation of 0.31. Goetsch and Davis (2010), wrote " UCL and LCL represent the ±3σ limits of the process averages and are drawn as dashed lines on the control charts" (p.450). They further wrote that "99.73% of all sample values will be found between + 3σ and -3σ" ( p. 366). Based on this information the following limits can be derived:
Lower Control Limit (LCL) = 2.73 - 3(.31) = 1.80 ( LCL = μ - 3σ)
Upper Control Limit (UCL) = 2.73 + 3(.31) = 3.66 ( UCL = μ + 3σ)
The table presented below provides the data retrieved from the University of Phoenix student website. The mean, standard deviation, and histogram of the provided data follow.
# of Samples x values C.1xC2 d d² Col 1 x Col5
1 1.92 1.92 -1.06 1.12 1.12
1 2 2 -0.98 0.96 0.96
1 2.06 2.06 -0.92 0.85 0.85
1 2.32 2.32 -0.66 0.44 0.44
1 2.36 2.36 -0.62 0.38 0.38
1 2.41 2.41 -0.57 0.32 0.32
2 2.43 4.86 -0.55 0.3 0.6
1 2.44 2.44 -0.54 0.29 0.29
1 2.46 2.46 -0.52 0.27 0.27
1 2.57 2.57 -0.41 0.17 0.17
1 2.61 2.61 -0.37 0.14 0.14
1 2.62 2.62 -0.36 0.13 0.13
1 2.63 2.63 -0.35 0.12 0.12
1 2.69 2.69 -0.29 0.08 0.08
1 2.71 2.71 -0.27 0.07 0.07
1 2.74 2.74 -0.24 0.06 0.06
1 2.75 2.75 -0.23 0.05 0.05
1 2.78 2.78 -0.2 0.04 0.04
1 2.79 2.79 -0.19 0.04 0.04
1 2.8 2.8 -0.18 0.03 0.03
2 2.81 5.62 -0.17 0.03 0.06
1 2.86 2.86 -0.12 0.01 0.01
1 2.9 2.9 -0.08 0.01 0.01
1 2.94 2.94 -0.04 0 0
1 3 3 0.02 0 0
1 3.02 3.02 0.04 0 0
1 3.06 3.06 0.08 0.01 0.01
1 3.09 3.09 0.11 0.01 0.01
1 3.12 3.12 0.14 0.02 0.02
1 3.18 3.18 0.2 0.04 0.04
1 3.26 3.26 0.28 0.08 0.08
1 3.29 3.29 0.31 0.1 0.1
2 3.3 6.6 0.32 0.1 0.2
1 3.31 3.31 0.33 0.11 0.11
1 3.33 3.33 0.35 0.12 0.12
1 3.34 3.34 0.36 0.13 0.13
2 3.35 6.7 0.37 0.14 0.28
1 3.44 3.44 0.46 0.21 0.21
1 3.5 3.5 0.52 0.27 0.27
1 3.55 3.55 0.57 0.32 0.32
1 3.65 3.65 0.67 0.45 0.45
1 3.78 3.78 0.8 0.64 0.64
1 3.99 3.99 1.01 1.02 1.02
2 4 8 1.02 1.04 2.08
1 4.01 4.01 1.03 1.06 1.06
n= 50 ∑ X=149.06 ∑ d² =13.39
Mean (μ) Standard
...
...